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Abstract
A general scheme for analysing reductions of Whitham hierarchies is presented.
It is based on a method for determining the S-function by means of a system of
first-order partial differential equations. Compatibility systems of differential
equations characterizing both reductions and hodograph solutions of Whitham
hierarchies are obtained. The method is illustrated by exhibiting solutions of
integrable models such as the dispersionless Toda equation (heavenly equation)
and the generalized Benney system.

PACS numbers: 02.40.Vh, 02.30.Ik
Mathematics Subject Classification: 58B20

1. Introduction

The study of dispersionless (or quasiclasssical) limits of integrable systems of KdV type and
their applications has been an active subject of research for more than 20 years (see for example
[1–14]). However, despite the fact that many important developments on the algebraic and
geometric aspects of these systems have been made, the theory of their solution methods seems
far from being completed. Indeed, only for a few cases [15–17] is the dispersionless limit of
the inverse scattering method available and dispersionless versions of ordinary direct methods
such as the ∂-method are not yet fully developed [18].

In [3, 4] Kodama and Gibbons provided a direct method for finding solutions of the
dispersionless KP (dKP) equation

(ut + 3uux)x = 3
4uyy (1)

and its associated dKP hierarchy of nonlinear systems. The main ingredient of their method
is the use of reductions of the dKP hierarchy formulated in terms of hydrodynamic-type
equations. As a consequence, it follows that solutions of the dKP hierarchy turn out to be
determined through hodograph equations. Recently, we proposed [19] an alternative direct
method for solving the dKP hierarchy from its reductions. It is based on the characterization
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of reductions and hodograph solutions of the dKP hierarchy by means of certain systems of
first-order partial differential equations.

The aim of this paper is to present a generalization of the method in [19] which applies
to the Whitham hierarchies of dispersionless integrable systems. These hierarchies were
introduced by Krichever in [7] and contain many interesting dispersionless models such as,
for example, the (2 + 1)-dimensional integrable systems

�xy + (e�)tt = 0 (2)

known as the dispersionless Toda (dT) equation (heavenly equation or Boyer–Finley
equation [20, 21]), and the generalized Benney system [10]

at + (av)t = 0 vt + vvx + wx = 0 wy + ax = 0. (3)

In the next section, we review briefly the definition of the Whitham hierarchies (zero
genus case) and introduce our main notation conventions. Section 3 deals with the method for
characterizing reductions and hodograph solutions of the Whitham hierarchies. To this end,
we take advantage of the same scheme as in [19] to introduce reductions through systems of
first-order partial differential equations. The main difference with respect to the procedure
used in [19] lies in the more involved construction of the S-function. As in the study of the dKP
hierarchy, we find that the compatibility equations for characterizing diagonal reductions of
the Whitham hierarchies are deeply connected with the theory of Combescure transformations
of conjugate nets. Finally, section 4 is devoted to illustrating the method with examples of
hodograph solutions of (2) and (3).

2. The Whitham hierarchy

The Mth Whitham hierarchy is related to a family of evolution equations for a set of M
functions zα = zα(p, t), 1 � α � M depending on a complex variable p and an infinite set of
complex time parameters

t := {tA : A = (α, n) ∈ A}
where

A = {(α, 0)}Mα=2

⋃
{(α, n)} α=1,...,M

n=1,...,∞
.

It is assumed that a neighbourhood D of ∞ in the extended complex plane of the p variable
exists on which each zα has a simple pole at an associated point qα = qα(t). In particular, we
set q1 = ∞ and assume that z1 posses the normalized Laurent expansion

z1(p, t) = p +
∞∑

n=1

a1,n(t)

pn
p → ∞. (4)

The corresponding expansions for the remaining functions zα at qα will be written as

zi(p, t) = ai,−1(t)

p − qi(t)
+

∞∑
n=0

ai,n(t)(p − qi(t))
n p → qi(t) 2 � i � M. (5)

In order to define the Whitham equations we introduce the system of evolution equations

∂zα

∂tA
= {�A, zα} 1 � α � M. (6)

Here {·, ·} is the Poisson bracket

{F1, F2} := ∂F1

∂p

∂F2

∂x
− ∂F1

∂x

∂F2

∂p
x := t1,1
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and the functions �A = �A(p, t) are defined by

�A =
{−ln(p − qi(t)) for A = (i, 0) 2 � i � M

((zα)n)+ for A = (α, n) 1 � α � M n � 1
(7)

where

((zα)
n)+ := P(α,+)

(
zn
α

)
with P(α,+) being the following projectors acting on Laurent series around p = qα(t),

P(1,+)

( ∞∑
n=−∞

anp
n

)
=

∞∑
n=0

anp
n

P(i,+)

( ∞∑
n=−∞

bn(p − qi(t))
n

)
=

∞∑
n=1

b−n

(p − qi(t))n
2 � i � M.

.
The Whitham hierarchy is the set of equations

∂�A

∂tB
− ∂�B

∂tA
+ {�A,�B} = 0 A,B ∈ A (8)

which describe the compatibility conditions for the system (6). For M = 1 the Whitham
hierarchy becomes the dispersionless Kadomtsev–Petviasvhili (dKP) hierarchy. Some
interesting nonlinear models included in the case M = 2 are, for example, as follows:

(1) The dispersionless Toda (dT) equation (heavenly equation or Boyer–Finley equation)

�xy + (e�)tt = 0 (9)

which is obtained from (8) by setting A = (2, 0), B = (2, 1) and

y := t(2,1) t := − t(2,0)

� := ln a2,−1 (10)

�(2,0) = −ln(p − q2) �(2,1) = a2,−1(t)

p − q2(t)
.

(2) The generalized Benney system (generalized gas equation) [10]

at + (av)x = 0 vt + vvx + wx = 0 wy + ax = 0 (11)

can be regarded as a two-dimensional generalization of the equations for one-dimensional
gas dynamics. It takes the form (8) by setting A = (2, 1), B = (1, 2) and

y := t(2,1) t := − 1
2 t(1,2) a := a2,−1 v := q2

w := a1,1 �(2,1) = a2,−1(t)

p − q2(t)
�(1,2) = p2 + 2a1,1.

(12)

3. Reductions of the Whitham hierarchy

3.1. The S-function

In this paper we shall study algebraic orbits of the zero genus Whitham hierarchy [8]. In other
words, we will assume a set of functional relations of the form

zi = fi(z) z := z1 2 � i � M (13)

which are easily checked to be compatible with (6).
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Furthermore, it follows from (6) and (8) that

∂

∂tB
�A(p(z, t), t) = ∂

∂tA
�B(p(z, t), t)

and therefore there exists a potential function S = S(z, t) satisfying

∂S(z, t)

∂tA
= �A(p(z, t), t) A ∈ A. (14)

Reciprocally, we can state the following proposition on which our solution method for
the Whitham hierarchy will be based:

Proposition 1. Let {zα(p, t)}Mα=1 be a set of functions satisfying a system of time-independent
relations (13) as well as (4) and (5). If a function S(z, t) verifying (14) exists, then the
functions zα(p, t) provide a solution of the Whitham hierarchy.

Proof. First we note that by setting A = (1, 1) in (14) it follows that

p(z, t) = ∂S(z, t)

∂x

so that
∂p

∂tA
= ∂

∂x

∂S(z, t)

∂tA
= ∂

∂x
�A(p(z, t), t)

= ∂�A

∂p

∂p

∂x
+

∂�A

∂x
.

Hence, the function z = z(p, t) satisfies

∂z

∂tA
= − ∂z

∂p

∂p

∂tA
= − ∂z

∂p

(
∂�A

∂p

∂p

∂x
+

∂�A

∂x

)

= ∂�A

∂p

∂z

∂x
− ∂�A

∂x

∂z

∂p
= {�A, z}.

Therefore, by using (13) we deduce (6). �

3.2. N-reductions of the Whitham hierarchy

We describe a method for finding solutions of the Whitham hierarchy from functions
z = z(p,u) depending on p and a finite set of variables u := (u1, . . . , uN), such that the
inverse function p = p(z,u) satisfies a system of equations of the form

∂p

∂ui

= Ri(p,u) 1 � i � N (15)

or, equivalently, in terms of z = z(p,u)

∂z

∂ui

+ Ri(p,u)
∂z

∂p
= 0 1 � i � N. (16)

The following conditions for the functions Ri will be assumed:

(i) The functions Ri are rational functions of p which have singularities only at N simple
poles pi = pi(u), i = 1, . . . , N , and vanish at p = ∞. Therefore, they can be expanded
as

Ri(p,u) =
N∑

j=1

rij (u)

p − pj(u)
. (17)
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(ii) The functions rij (u), pi(u) satisfy the compatibility conditions for (16) and (15),

rik

∂pk

∂uj

− rjk

∂pk

∂ui

=
∑
l �=k

rjlrik − rilrjk

pk − pl

(18)
∂rik

∂uj

− ∂rjk

∂ui

= 2
∑
l �=k

rjkril − rikrjl

(pk − pl)2

where i �= j .

The starting point of the method is a solution z = z(p,u) of (15) with a Laurent expansion

z(p,u) = p +
∞∑

n=1

an(u)

pn
p → ∞ (19)

which is assumed to define a univalent analytic function z : D → D′ between two
neighbourhoods D and D′ of ∞ in the extended complex planes of the variables p and z

respectively. The next step is to take (M −1) different points z0,i ∈ D′, 2 � i � M and define
the functions

z1(p,u) := z(p,u)

zi(p,u) := 1

z(p, u) − z0,i

2 � i � M.
(20)

Obviously, they satisfy the system of equations

∂zα

∂ui

+ Ri(p,u)
∂zα

∂p
= 0 1 � α � M (21)

and admit expansions of the form

z1(p,u) = p +
∞∑

n=1

a1,n(u)

pn
p → ∞

zi(p,u) = ai,−1(u)

p − qi(u)
+

∞∑
n=0

ai,n(u)(p − qi(u))n p → qi(u)

(22)

for 2 � i � M , here

qi(u) := p(z0,i ,u). (23)

Observe that introducing the expansions at p = ∞, qi , i = 2, . . . ,M , of (22) in (21) we
obtain 



∂a1,1

∂ui

= − ∑N
j=1 rij

∂a1,2

∂ui

= − ∑N
j=1 rijpj

∂
(
a1,3 + a2

1,1

/
2
)

∂ui

= − ∑N
j=1 rijp

2
j

(24)




∂qα

∂uj

= Rj (qα)

∂ log aα,−1

∂uj

= dRj

dp
(qα) for α = 2, . . . ,M

(25)
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while the other coefficients aα,n in the expansion of zα are determined by

∂a1,n

∂uj

= −Rj,n +
n−2∑
k=1

(n − k)Rj,kai,n−k

∂ai,n

∂uj

=
n+2∑
k=1

1

k!

dkRj

d pk
(qi)ai,n−k+1 for i = 2, . . . ,M

with

Rj,k =
N∑

i=1

rjip
k−1
i .

Finally, we introduce the function

S(p,u, t) = S+(p,u, t) + S−(p,u) S+ :=
∑
A∈A

tA�A(p,u) (26)

where �A(p,u) are defined by (7) and (22), and S−(p,u) is an analytic function on D such
that

lim
p→∞S−(p,u) = 0. (27)

We can now enounce the following statement:

Proposition 2. If S−(p,u) satisfies a system of equations

∂S−
∂ui

+ Ri

∂S−
∂p

=
∑

k

rikFk

p − pk

1 � i � N (28)

for a given set of functions {Fi = Fi(u)}Ni=1 verifying the compatibility conditions for (28)

rik

∂Fk

∂uj

− rjk

∂Fk

∂ui

=
∑
l �=k

rjlrik − rilrjk

(pk − pl)2
(Fk − Fl) i �= j (29)

and the functions {ui = ui(t)}Ni=1 are implicitly determined by means of the hodograph
relations ∑

A∈A

tA
∂�A

∂p
(pi(u),u) + Fi(u) = 0 1 � i � N (30)

then

S(z, t) :=S(p(z,u(t)),u(t), t) (31)

is an S-function for the Whitham hierarchy.

Proof. The proof is based on the following consequence of (26) and (31),

∂

∂tA
S(z, t) = �A(p(z,u(t)), t) +

N∑
i=1

∂ui

∂tA

(
∂

∂ui

S(p(z,u),u, t)

) ∣∣∣∣
u=u(t)

(32)

and our aim is to prove that under the hypothesis of the proposition the functions

∂

∂ui

S(p(z,u),u, t) = ∂S
∂p

Ri +
∂S
∂ui

(33)

vanish identically, so that S(z, t) satisfies (14) and, consequently, the statement will follow at
once.
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By construction the functions (33) are analytic on D up to a set of possible isolated
singularities at {pi(u), qα(u)}. On the other hand, we observe that (28) implies

Fi(u) = ∂S−
∂p

(pi(u),u) (34)

so that (30) is equivalent to

∂S
∂p

(pi(u),u) = 0 1 � i � N. (35)

As a consequence we deduce that the functions (33) are analytic at pi(u). Hence, their possible
singularities reduce to the points qα(u). However, we have

∂

∂ui

S(p(z,u),u, t) =
∑
A∈A

tA
∂

∂ui

�A(p(u),u) +
∂S−
∂ui

(36)

and we may rewrite

�(i,0) = ln
1

z − z0,i

− P(i,−)

(
�(i,0) − 1

z − z0,i

)
2 � i � M

�(α,n) = zn
α − P(α,−)

(
�(α,n) − zn

α

)
n � 1

(37)

where P(α,−) := 1 − P(α,+) are the projectors that annihilate the singular terms of Laurent
expansions at p = qα(u). Thus, by noting that the first terms on the right-hand side of (37) are
u-independent while the second terms are analytic at qα(u), we conclude that the functions
(33) are also analytic at the points qα(u). Hence, these functions are analytic on the whole
domain D. Moreover, by taking (27) into account, it follows that there is an expansion of the
form

∂

∂ui

S(p(z,u),u, t) =
∞∑

n=1

si,n(u, t)

pn
(38)

so that

∂

∂ui

S(p(z,u),u, t) = P(1,−)

(
∂

∂ui

S(p(z,u),u, t)

)

= P(1,−)

(
∂S
∂p

Ri

)
+

∂S−
∂ui

.

Let us now denote by E = E(p,u) any entire function of p such that

E(pi(u),u) = Fi(u) i = 1, . . . , N.

Then, by taking into account that (30) implies

P(1,−)

((
∂S+

∂p
+ E

)
Ri

)
= 0

it follows that

∂

∂ui

S(p(z,u),u, t) = P(1,−)

(
∂S−
∂p

Ri − ERi

)
+

∂S−
∂ui

= ∂S−
∂p

Ri +
∂S−
∂ui

−
∑

k

rikFk

p − pk

= 0.

Hence, the statement follows. �
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3.3. Diagonal reductions, symmetric conjugate nets and potentials

In the case of diagonal reductions rij = δij ri ,

∂p

∂ui

= − ri(u)

p − pi(u)
(39)

with i = 1, . . . , N , the compatibility conditions (18) and (29) reduce to

∂ri

∂uj

= 2
rirj

(pj − pi)2

∂pi

∂uj

= rj

pj − pi

∂Fi

∂uj

= rj

Fj − Fi

(pj − pi)2
(40)

where i �= j . We may extend our observations of [19] by showing that the diagonal reductions
of the Whitham hierarchy determine a particular symmetric conjugate net as well as a set
of (M + 1) Combescure transformed symmetric conjugate nets. In particular, we prove that
the coefficients a1,1, a1,2, a1,3, aα,−1 and qα are geometrical potentials associated with these
Combescure transformed nets.

A conjugate net with curvilinear coordinates u can be described in terms of a set of
rotation coefficients {βij (u)} i,j=1,...,N

i �=j
which satisfy the Darboux equations [22]

∂βij

∂uk

= βikβkj

for any triple of different labels i, j, k. The associated Lamé coefficients {Hi(u)}i=1,...,N are
defined by the solutions of the linear system

∂Hi

∂uj

= βjiHj .

Under a Combescure transformation a conjugate net transforms into a parallel conjugate
net. The rotation coefficients are left invariant but the Lamé coefficients change. The new
Lamé coefficients are given by

H̃ i = σiHi

with
∂σi

∂uj

= βji

Hj

Hi

(σj − σi).

A conjugate net is called symmetric iff βij = βji . Given any pair of parallel symmetric
conjugate nets characterized by {βij ,Hj } and {βij , H̃ j }, respectively, then, it follows that
locally there exists a potential function ρ so that σiH

2
i = ∂ρ

∂ui
; to see this just observe that

∂HiH̃ i

∂uj

= βij (HiH̃ j + HjH̃ i)

which is a symmetric expression provided βij = βji .

Taking Hi :=√
ri and βij :=

√
ri rj

(pi−pj )
2 , as the first equation on (40) is ∂Hi

∂uj
= βijHj , we can

identify Hi and βij as the Lamé and rotation coefficients, respectively, of a conjugate net.
The functions d�i,n

d p

∣∣
p=qα

determining the hodograph relations are polynomials in

pi,α =



pi for j = 1
1

pi − qα

for α = 2, . . . ,M;

observing that βijHj/Hi = rj

(pi−pj )
2 it is easy to see that these coefficients determine a set of M

Combescure transformations. Then, together with the set of Lamé coefficients {Hi = √
ri}Ni=1
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we have the M families of Lamé coefficients

{Hi,α :=pi,α

√
ri}Ni=1 for α = 1, . . . ,M.

It also follows that there is another Combescure transformed net with Lamé coefficients given
by

{hi := √
riFi}Ni=1.

From (24) and (25) we easily find the potentials for HiHi,j and H 2
i,j :

H 2
i = −∂a1,1

∂ui

(41)

HiHi,α =




−∂a1,2

∂ui

for α = 1

−∂qα

∂ui

for α = 2, . . . ,M

(42)

H 2
i,α =




−∂
(
a1,3 + a2

1,1

/
2
)

∂ui

for α = 1

−∂ log aα,−1

∂ui

for α = 2, . . . ,M.

(43)

In this way a1,1, a1,2, a1,3, aα,−1 and qα, α = 2, . . . ,M acquire a direct geometrical meaning.
Observing that

βij =
√

rirj

(pi,α − pj,α)2
p2

i,kαp2
j,α for α = 2, . . . ,M

we write our original compatibility conditions as follows,
∂ri

∂uj

= 2
rirj

(pj,α − pi,α)2
p2

i,αp2
j,α

∂pi,α

∂uj

= rj

pj,α − pi,α

p2
i,αp2

j,α (44)

∂Fi

∂uj

= rj

Fj − Fi

(pj,α − pi,α)2
p2

i,αp2
j,α

for α = 2, . . . ,M . This system determines a particular symmetric conjugate net and two
Combescure transformations of it. Moreover, if we want to recover the original formulation
from these pi,α we only need the potential qα of pi,αri and then ri , pi = p−1

i,α + qα, α =
2, . . . ,M , will fulfil (40).

From (41)–(43) we easily obtain

∂2a1,1

∂ui∂uj

+ βji

√
ri

√
rj = 0


− ∂a1,2

∂ui∂uj

+ βji

√
ri

√
rj (pi + pj ) = 0

∂2qα

∂ui∂uj

+ βji

√
ri

√
rj (pi,α + pj,α) = 0 for α = 2, . . . ,M




∂2
(
a1,3 + a2

1,1

/
2
)

∂ui∂uj

+ 2βji

√
ri

√
rjpipj = 0

∂2 log aα,−1

∂ui∂uj

+ 2βji

√
ri

√
rjpi,αpj,α = 0 for α = 2, . . . ,M.
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Observe that (40) or (44) can be written in terms of two potentials only. For example, we
can choose these potentials to be qα and log aα,−1 and use

ri = −
(

∂qα

∂ui

)2

∂ log aα,−1

∂ui

pi,α =
∂ log aα,−1

∂ui

∂qα

∂ui

together with

βij

√
ri

√
rj = rirj

(pi,α − pj,α)2
p2

i,αp2
j,α

= ∂ log aα,−1

∂ui

∂ log aα,−1

∂uj

(
∂qα

∂ui

∂qα

∂uj

)2 1

W−
ij (aα,−1, qα)2

where

W±
ij (f, g) := ∂f

∂ui

∂g

∂uj

± ∂a

∂uj

∂g

∂uj

for α = 2, . . . ,M

W−
ij (aα,−1, qα)2 ∂2qα

∂ui∂uj

+
∂ log aα,−1

∂ui

∂ log aα,−1

∂uj

∂qα

∂ui

∂qα

∂uj

W+
ij (aα,−1, qα) = 0

W−
ij (aα,−1, qα)2 ∂2 log aα,−1

∂ui∂uj

+ 2

(
∂ log aα,−1

∂ui

∂ log aα,−1

∂uj

)2
∂qα

∂ui

∂qα

∂uj

= 0

for i, j = 1, . . . , N and i �= j.

4. Examples

4.1. Dispersionless Toda equation

In order to find solutions of the dT equation

�xy + (e�)tt = 0

we set all tA equal to zero with the exception of t(2,1) and t(2,0), so that from (10) and by
denoting

q(t) := q2(t) ν(t) := a2,−1(t) (45)

we have

� = ln ν(t). (46)

4.1.1. N = 1 reductions. Let us first consider reductions z = z(p, u) depending on a single
variable u defined by u = −a1,−1. Then (15) becomes the Abel equation

∂p

∂u
= 1

p − p1(u)
(47)

and (30) reads

t

p1(u) − q(u)
− yν(u)

(p1(u) − q(u))2
+ x + F(u) = 0 (48)

where q(u), p1(u) and F(u) are arbitrary functions of u. On the other hand,

∂q(u)

∂u
= 1

q(u) − p1(u)

d ln ν

du
= − 1

(q(u) − p1(u))2
.
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In this way, we may rewrite (48) as

t

√
−ν ′

ν
− yν ′ − x + F(u) = 0

where ν ′ := d ν/d u. Therefore, as p1(u) is an arbitrary function of u we have

tT (u) + yY (u) + xX(u) + F(u) = 0 � = ln

(
−XY

T 2

)
(49)

where T (u),X(u), Y (u) and F(u) are arbitrary functions of u. Thus when T ,X, Y and F
are polynomials up to fourth degree we can obtain explicit solutions. For example, by taking
second-order polynomials we obtain

u := γ ±
√

γ 2 − δ γ := 1

2

X1x + Y1y + T1t + F1

X2x + Y2y + T2t + F2
δ := X0x + Y0y + T0t + F0

X2x + Y2y + T2t + F2

and a solution of dT is

� = ln
(
(X1 − γX2)(−γ ±

√
γ 2 − δ) + X0 − δX1

)
+ ln

(
(Y1 − γ Y2)(−γ ±

√
γ 2 − δ)

+ Y0 − δY1
) − 2 ln

( − (T1 − γ T2)(−γ ±
√

γ 2 − δ) − T0 + δT1
)
.

For the choice T = u3, Y = u2,X = u, F = 1 we obtain the following hodograph
relation,

tu3 + yu2 + xu + 1 = 0

and the corresponding solution of the dispersionless Toda equation is

� = 3 log

(
6tf

12xt − 4y2 + 8yf − f 2

)
where

f (x, y, t) := 3

√
36xyt − 108t2 − 8y3 + 12

√
3t

√
4x3t − x2y2 − 18xyt + 27t2 + 4y3.

4.1.2. N � 2 reductions. Let us consider now reductions z = z(p,u) involving N > 1
variables u := (u1, . . . , uN) associated with a system of equations (16) (or (15)).
Consequently, the functions rij (u), pi(u) are assumed to satisfy the compatibility
conditions (29). In this case we obtain the following system of equations for determining
q(u) and ν(u),

∂q

∂ui

= Ri(q,u)
∂ ln ν

∂ui

= ∂Ri

∂p
(q(u),u) (50)

where i = 1, . . . , N . Thus, the hodograph relations (30) can be written as

t

pi(u) − q(u)
−

y exp
( ∫ u ∑N

j=1
∂Rj

∂p
(q(u),u) duj

)
(pi(u) − q(u))2

+ x + Fi = 0

for i = 1, . . . , N . In the case of diagonal reductions the function q solves

∂q

∂ui

= ri

pi − q

and by denoting

Pi := 1

pi − q
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the hodograph equations read

tPi − yP 2
i exp


−

∫ u N∑
j=1

rjP
2
j duj


 + x + Fi = 0.

For example a simple solution of the compatibility conditions (40) for N = 2 is

r1 = −r2 = 1
8 (u1 − u2) p1 = 1

4 (3u1 + u2)

p2 = 1
4 (u1 + 3u2) F1 = −F2 = c

u2 − u1

(51)

where c is an arbitrary complex constant. In this case we can obtain the explicit solution
z(p,u) of (16) satisfying (19). It is given by

z = p +
(u1 − u2)

2

16p − 8(u1 + u2)
. (52)

Thus, from (23) we can set

q(u) = − 1
2

√
(u1 + z0)(u2 + z0) + 1

4 (u1 + u2 − 2z0) (53)

so that by denoting

Ui := √
ui + z0 i = 1, 2

the hodograph relations become

x +
4y

(U1U2)2
− c

(U1 − U2)2
= 0 4t +

(
2x − c

(U1 − U2)2

)
(U1 + U2)

2 − c = 0 (54)

and we have

� = ln
(U1 + U2)

2

U1U2
. (55)

The system (54) reduces to a quartic equation. To see this it is enough to write the system
(54) as

x +
64y

(u+ − u−)2
− c

u−
= 0 4t +

(
2x − c

u−

)
u+ − c = 0

where

u± := (U1 ± U2)
2.

Then by eliminating u+ = (c − 4t)(2xu− − c)−1u− we obtain

x3u4
− + (−3c + 4t)x2u3

− + (4t2 − 8ct + 3c2 + 64xy)xu2
−

+ (−4t2 + 4ct − 64xy − c2)cu− + 16c2y = 0

and the associated solution (55) of the dT equation is given by

� = log

(
8t − 2c

2t − c + xu−

)
. (56)

4.2. Generalized gas equation

We consider now solutions of the generalized gas equation

at + (av)x = 0 vt + vvx + wx = 0 wy + ax = 0. (57)

We set all time variables tA equal to zero except for t(2,1) and t(1,2) and use the notation
conventions (45). Then, from (12) it follows that the dependent variables are given by

a = ν(t) v = q(t) w = a1,1(t).
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4.2.1. N = 1 reductions. Reductions z = z(p, u) depending on a single variable u, defined
by u = −a1,−1, lead to the Abel equation (47) and to a hodograph relation (30) of the form

−tp1 − yν(u)

(p1(u) − q(u))2
+ x + F(u) = 0 (58)

where q(u), p1(u) and F(u) are arbitrary functions of u. We may rewrite (58) as

t

(
1

P(u)
−

∫ u

P (u) du

)
− yP 2 exp

(
−

∫ u

P 2 du

)
+ x + F(u) = 0 (59)

where P := ∂uq(u) is an arbitrary function of u and

a = exp

(
−

∫ u

P 2 du

)
v =

∫ u

P du w = −u. (60)

It is convenient to use the following equivalent form of (57):

at + (av)x = 0 (vt + vvx)y − axx = 0. (61)

To prove the equivalence between (57) and (61) note that given a solution (a, v) of (61), then
by integrating the second equation of (61) with respect to the y variable we conclude the
existence of a function f (x, t) such that

vt + vvx −
∫ y

y0

axx d y + fx(x, t) = 0.

Then, a solution of (57) is given by (a, v,w) with

w(x, y, t) := f (x, t) −
∫ y

y0

ax(x, y, t) dy.

Now we will show two reformulations of the previous N = 1 technique providing us with
explicit solutions to (61).

(1) If we introduce a(u) = exp
(−∫ u

P 2(u) du
)

and assume that a is a solution of the following
ODE,

da

du
= − 1

af ′(a)2

for a given function f = f (a)
(
f ′(a) = d f

d a

)
, then as log a = − ∫ u

P 2(u) du we have
1/P := −af ′(a) and we obtain the following hodograph relation,

(af ′(a) + f (a))af ′(a)2t + y − (x + F(a))af ′(a)2 = 0. (62)

Thus, given two arbitrary functions f and F, and a solution a(x, y, t) of (62), it follows
that a, v = f (a) provide a solution of (61). For example, if f = Aa + B and
F = −(Ca3 + Da2 + Ea + G), with A,B,C,D,E and G being arbitrary constants
we obtain the hodograph relation

A2Ca4 + A2Da3 + A2(2At + E)a2 + A2(Bt − Ax + AG)a + y = 0

and the solution of (61) is a, v with v given by

v = Aa + B.

If we take f = a + 1 and F = a3 we obtain the following solution,

a = α − 3(t − x) − 4t2

9α
− 2t

3
v = a + 1
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with

α := (
12t (t − x) − 18y − 32

3 t3 + 2(12t3 − 36xt2 − 12t4 + 36tx2 + 24xt3 − 12x3

− 12x2t2 − 108t2y + 108txy + 81y2 + 96yt3)1/2
)1/3

.

Another simple example arises for f (a) = log a, F = 0, the corresponding solution to
the hodograph equation is

a(x, y, t) = t

y
W

(y

t
ex/t−1

)
and

v(x, y, t) = W
(y

t
ex/t−1

)
− 1 +

x

t

where W is the Lambert function defined by

W(z) eW(z) = z.

(2) Alternatively, we may introduce the dependent variable v = ∫ u
P du where v is assumed

to satisfy the ODE dv
du

= −g′(v)/g(v). Then, from (59) and by taking into account that g

is the inverse function of f , the following hodograph relation is obtained:

−t (g(v) + vg′(v))g(v) − yg′(v)
3 + g(v)g′(v) + F(v) + g(v)g′(v) = 0.

Therefore, given two arbitrary functions g, F and a solution v(x, y, t) to this hodograph
relation, we obtain a solution a, v of (61) with a given by

a = g(v).

In particular, if g :=Aµ2 + Bµ + C and F = Dµ + E the hodograph relation takes the
form

−3A2tµ4 + (2A2x − 8A3y − 5ABt + AD)µ3 + (3ABx − 12A2By − 2(2AC + B2)t

+ AE + BD)µ2 + ((2AC + B2)x − 6AB2y − 3BCt

+ BE + CD)µ + BCx − B3y − C2t + EC = 0

4.2.2. N � 2 reductions. Reductionsz= z(p,u) involvingN > 1variablesu :=(u1, . . . , uN)

can be analysed by the same scheme as in the case of the dT equation. They are associated
with a system of equations (16) (or (15)), where the functions rij (u), pi(u) are assumed to
verify the compatibility conditions (29). The functions q(u) and ν(u) are determined by
solving the system (50). The hodograph relations (30) read

−tpi(u) −
y exp

( ∫ u ∑N
j=1

∂Rj

∂p
(q(u),u) duj

)
(pi(u) − q(u))2

+ x + Fi = 0 (63)

where 1 � i � N . The dependent variables of the generalized Benney system are then given
by

a = exp


∫ u N∑

j=1

∂Rj

∂p
(q(u),u) duj


 v = q(u)

w =
∫ u N∑

i,j=1

Res(Ri(p,u), pj (u)) duj .

(64)



The Whitham hierarchies: reductions and hodograph solutions 4061

In the particular case of the N = 2 reduction of diagonal type defined by

r1 = −r2 = 1
8 (u1 − u2)

p1 = 1
4 (3u1 + u2) p2 = 1

4 (u1 + 3u2)
(65)

the function q(u) is given by (53), so that by denoting

Ui := √
ui + z0 i = 1, 2

we have

q(u) = − 1
2U1U2 + 1

4

(
U 2

1 + U 2
2 − 4z0

)
p1(u) = 1

4

(
3U 2

1 + U 2
2 − 4z0

)
p2(u) = 1

4

(
U 2

1 + 3U 2
2 − 4z0

)
.

(66)

The hodograph relations (63) reduce to

− 4y

U 3
1 U2

− 1

4

(
3U 2

1 + U 2
2 − 4z0

)
t + x + F1 = 0

− 4y

U 3
2 U1

− 1

4

(
3U 2

2 + U 2
1 − 4z0

)
t + x + F2 = 0

(67)

and (64) implies

a = (U1 + U2)
2

U1U2
v = 1

4
(U1 − U2)

2 − z0 w = 1

16

(
U 2

1 − U 2
2

)2
. (68)

In particular, for F1 = F2 = 0 one finds the following explicit solution:

a = 2

3

x + z0t

(t2y)1/3
+ 2 v = x

3t
−

(y

t

)1/3
− 2

3
z0 w = (x + z0t)

2

9t2
−

(y

t

)2/3
. (69)
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